In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). - (d) For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. - (e) [Reserved] - (f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. The digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section. - (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this sec- - (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping fre- quencies by multiple transmitters is not permitted. Note: Spread spectrum systems are sharing these bands on a noninterference basis with systems supporting critical Government requirements that have been allocated the usage of these bands, secondary only to ISM equipment operated under the provisions of part 18 of this chapter. Many of these Government systems are airborner adiolocation systems that emit a high EIRP which can cause interference to other users. Also, investigations of the effect of spread spectrum interference to U. S. Government operations in the 902-928 MHz band may require a future decrease in the power limits allowed for spread spectrum operation. [54 FR 17714, Apr. 25, 1989, as amended at 55 FR 28762, July 13, 1990; 62 FR 26242, May 13, 1997; 65 FR 57561, Sept. 25, 2000; 67 FR 42734, June 25, 2002] ## §15.249 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz. (a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following: | Fundamental frequency | Field
strength of
fundamental
(millivolts/
meter) | Field
strength of
harmonics
(microvolts/
meter) | |-----------------------|---|---| | 902–928 MHz | 50 | 500 | | 2400–2483.5 MHz | 50 | 500 | | 5725–5875 MHz | 50 | 500 | | 24.0–24.25 GHz | 250 | 2500 | - (b) Fixed, point-to-point operation as referred to in this paragraph shall be limited to systems employing a fixed transmitter transmitting to a fixed remote location. Point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information are not allowed. Fixed, point-to-point operation is permitted in the 24.05–24.25 GHz band subject to the following conditions: - (1) The field strength of emissions in this band shall not exceed 2500 millivolts/meter. - (2) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.001\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in ## § 15.251 the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery. - (3) Antenna gain must be at least 33 dBi. Alternatively, the main lobe beamwidth must not exceed 3.5 degrees. The beamwidth limit shall apply to both the azimuth and elevation planes. At antenna gains over 33 dBi or beamwidths narrower than 3.5 degrees, power must be reduced to ensure that the field strength does not exceed 2500 millivolts/meter. - (c) Field strength limits are specified at a distance of 3 meters. - (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation. - (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth. - (f) Parties considering the manufacture, importation, marketing or operation of equipment under this section should also note the requirement in §15.37(d). [54 FR 17714, Apr. 25, 1989, as amended at 55 FR 25095, June 20, 1990; 67 FR 1625, Jan. 14, 2002] ## §15.251 Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. (a) Operation under the provisions of this section is limited to automatic vehicle identification systems (AVIS) which use swept frequency techniques for the purpose of automatically identifying transportation vehicles. (b) The field strength anywhere within the frequency range swept by the signal shall not exceed 3000 microvolts/ meter/MHz at 3 meters in any direction. Further, an AVIS, when in its operating position, shall not produce a field strength greater than 400 microvolts/meter/MHz at 3 meters in any direction within ±10 degrees of the horizontal plane. In addition to the provisions of §15.205, the field strength of radiated emissions outside the frequency range swept by the signal shall be limited to a maximum of 100 microvolts/meter/MHz at 3 meters, measured from 30 MHz to 20 GHz for the complete system. The emission limits in this paragraph are based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. (c) The minimum sweep repetition rate of the signal shall not be lower than 4000 sweeps per second, and the maximum sweep repetition rate of the signal shall not exceed 50,000 sweeps per second. (d) An AVIS shall employ a horn antenna or other comparable directional antenna for signal emission. - (e) Provision shall be made so that signal emission from the AVIS shall occur only when the vehicle to be identified is within the radiated field of the system. - (f) In addition to the labelling requirements in §15.19(a), the label attached to the AVIS transmitter shall contain a third statement regarding operational conditions, as follows: - * * * and, (3) during use this device (the antenna) may not be pointed within \pm ** degrees of the horizontal plane. The double asterisks in condition three (**) shall be replaced by the responsible party with the angular pointing restriction necessary to meet the horizontal emission limit specified in paragraph (b). - (g) In addition to the information required in subpart J of part 2, the application for certification shall contain: - (1) Measurements of field strength per MHz along with the intermediate frequency of the spectrum analyzer or equivalent measuring receiver; - (2) The angular separation between the direction at which maximum field strength occurs and the direction at